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Stress criteria and energy criteria for crack propagation are examined. It is shown that attempts 
to improve the delamination resistance of composites are inevitably hampered by fibre con- 
straints on matrix yield and flow. The toughness of the matrix in the absence of fibres is very 
roughly equal to twice the product of the matrix yield stress, the strain in the plastic zone, e, 
and the thickness of the yield zone at the crack faces, t. For ductile matrices with a given yield 
stress, then, it is probable that toughness is very roughly proportional to t (i.e. ductile matrices 
are expected to have fairly uniformly high values of e). However, when fibres are present 
(e.g. in 'a laminate) they severely restrict t, and hence the resistance to delamination. While t is 
less than the interfibre spacing, making the matrix tougher through increasing t directly affects 
composite toughness. Hence the resistance of the composite to delamination is directly 
proportional to matrix toughness. However, when t becomes so large as to equal the interfibre 
spacing, the development of matrix toughness is inhibited, and composite delamination resist- 
ance is little affected by further increases in matrix toughness. At this stage, additional 
increases in delamination resistance depend on increasing the matrix yield stress, rather than 
increasing the toughness of the matrix. 

1. I n t r o d u c t i o n  
Since it was realized that structures could be built 
using laminates made up from laminae having high 
volume fractions of aligned fibres, oriented in different 
directions, the benefits of these high-modulus, high- 
strength and low-density components have begun 
to be widely exploited. However, their brittleness, 
especially when carbon fibres are used, has been a 
problem [1]. This manifests itself in easy cracking 
across the fibres [2] and even easier cracking between 
the fibres. For example, with laminates the ease of 
delamination is a major problem [3]. It can be caused 
by relatively low energy impact, and results in loss of 
compressive strength. With opaque fibres, e.g. carbon, 
the damage, often being wholly inside the material, 
cannot easily be detected. 

Because this is such a serious problem, the subject 
of delamination has been much studied. It is mainly a 
problem with the brittleness of the polymer used for 
the matrix, but a weak fibre-matrix interface is also a 
cause of low resistance to delamination. The advent of 
thermoplastics has helped to alleviate the problem, 
but the benefits have not been as great as had been 
hoped. It was expected that there should be a linear 
relationship between the work of delamination, and 
the work of  fracture of the matrix. However, in 
practice this only occurred with relatively brittle 
polymer matrices, and when the tougher thermo- 
plastic matrices were used, there appeared to be 
diminishing returns from increasing the matrix tough- 
ness, see Fig. 1 [4]. 

It is well known that for across-the-grain fracture 

(i.e. fracture which involves the breaking of a large 
proportion of the fibres) the matrix toughness is not a 
major component of the work of fracture of the com- 
posite [5]. This is because the fibres inhibit the plastic 
flow of the matrix. A similar effect must be operating 
in the case of delamination, and in fact evidence has 
recently been produced which suggests that delami- 
nation is controlled by matrix strength, rather than 
matrix toughness [6]. 

In this paper both the stress at the crack tip and the 
energy at the crack tip will be taken into account in 
order to determine the relative importance of each for 
propagation of delamination cracks. The crack open- 
ing mode will be considered. 

2. Energy  and  s t r e s s  cr i ter ia  
First, examine materials which are more or less homo- 
geneous. Griffith [7] first pointed out the importance 
of energy in the fracture process, and laid the foun- 
dation for the development of fracture mechanics by 
Irwin [8] and co-workers. This was based on the idea 
of the propagation of an infinitely thin crack, coupled 
with the idea, due to Orowan [9], that the important 
energy absorbing process was plastic flow in the 
material, close to the crack face, rather than simply 
surface energy. In the last 30 years or so as a result of  
this work, fracture mechanics has become a very 
useful tool for designers of large structures. 

Because plastic flow occurs, there must be some 
rounding of the crack tip to relieve the high stresses 
there. Thus Wells [10] introduced the concept of 
crack opening displacement before crack propagation. 
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Figure t Work of fracture for delamination, G~, plotted against 
matrix work of fracture, G m, after Hunston et aL [4]. 
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Figure 3 (a) Edge crack of  length c, and (b) equivalent elliptical 
crack inside a piece of polymer. 

Piggott I1 l] looked at the propagation of cracks of  
finite width, and showed that there exists a brittleness 
criterion. He showed that the fracture behaviour of 
metals and ceramics depends on the ratio of  yield 
strength to Young's modulus. If this is greater than 
about 0.25% the material is brittle, if it is less than 
about 0.07% the material is ductile, and failed by 
tearing rather than fast fracture. Between these limits 
intermediate behaviour occurs. 

The work of fracture can be directly correlated with 
the plastic work near the fracture surface. Thus Hall 
[12] showed, by successively etching and X-raying 
fracture surfaces, that there was a thin zone (thick- 
ness t) at each fracture surface, which, in the case of a 
fracture in an iron, was subjected to a yield strain, e, 
which was about equal to 1.0 (see Fig. 2). If the yield 
stress of the steel is ay, we can write for the work of 
fracture, G, neglecting work hardening 

G = 2ayte (1) 

(remembering that the crack has two faces). 
Probably the most important difference between a 

tough and intrinsically strong material like a struc- 
tural steel, and a brittle but also intrinsically strong 
material like glass (the intrinsic strength of glass is 
evidenced by the strength of glass fibres) is the dif- 
ference in the thickness of  the worked zone, t. Hall and 
others have shown that it is moderately thick for steel; 
Marsh [13] showed that it had to be very thin for glass. 
Piggott [14] showed that inhomogeneity was an 
important factor; less inhomogeniety (as in the case of 
glass) tended to result in lower values of t. 

In the development of the ideas of crack opening 
displacement and propagation of cracks of finite 
width, the yield stress played a role. This is clear from 
Equation 1, which relates the work of fracture to the 
yield stress. Thus an essential step in the development 
of a crack is the yielding of  a small amount of material 
at the crack face. This concept of yielding can be 
applied to delamination of  composites. 

Figure 2 Three stages in the growth of a notch in a ductile polymer. 

3. Crack tip stress field 
Inglis [15] showed that in a homogeneous material 
there exists a stress field near the tip of an elliptic 
crack. It gives a maximum stress at the tip, at, given 
by 

a, = o~[1 + 2 (c/r) ]/2] (2) 

where o~ is the stress applied to the material, c is half 
the crack length for an internal crack, and the full 
crack length for a surface crack (see Fig. 3) and r is the 
radius of the crack tip. Consider a crack with a sharp 
tip, such that c/r >> 1 so that we can drop the 1 in 
Equation 2. In a laminate, where the crack is between 
laminae, the fibres will introduce an extra stress field 
into the matrix. Let the effect of this be to increase o, 
by a factor b. Now we can estimate the applied stress 
required to give yielding at the tip. This requires 
O t ~-  O'my where amy is the matrix yield stress. Inserting 
these factors into Equation 2 and re-arranging gives, 
for the applied stress required to cause yielding 

~my(r/c) l/2/2b (3) 

where b > 1. Now compare this with the Griffith- 
Irwin equation as written for anisotropic material. 

aoo = (E*a[/Trc) '/2 (4) 

where E* is determined by the compliances of the 
composite [16]. For example 

I / E *  ~- ($33S]1/2) 1/2 [(SI]/$33) 1/2 

+ (2S,3 + S,5)/$33] ]/z (5) 

for a stress applied in the 3 direction, with a crack 
propagating normal to the 3 axis i.e. the crack opening 
mode. For  a unidirectional laminate, E* may be esti- 
mated using rule of  mixtures expressions. For  com- 
posites containing at least 50% stiff fibres (e.g. carbon, 
Kevlar or boron) S,j ~- 1/VfEr, $33 ~ (1 - V0/Em, 
S13 ~ - - vm/VrE f and Sss -~ 2(1 - Vr)(1 + Vm)/E m 
where Vf is the fibre volume fraction, Ef and E m 
are fibre and matrix Young's moduli, and v m is the 
Poisson's ratio of  the matrix which, for simplicity, has 
been assumed to be approximately the same as that of 
the fibres. For  V r = 0.5 

E *  ~ 2(Elg in)  1/2 (6) 

Returning to Equations 3 and 4, it may be seen that 
they both have an inverse square root relation between 
c% and c. Thus if crack propagation proceeds by 
continuous yielding there is a pseudo toughness, G~p, 
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obtained by equating the two expressions 

Glp = 7ro-2myr/4E*b 2 (7) 

This pseudo toughness corresponds to the condition 
required for the stresses at the crack tip to be sufficient 
to overcome the resistance to yielding of the polymer 
at the crack tip. 

4. Work  at the crack t ip  
4.1. Work in the polymer matrix 
We can use Equation 1 to estimate the work in the 
polymer at the crack tip, if t and e can be evaluated. 
Fig. 4 illustrates how the fibres inhibit the extension of 
the plastic zone. It is unlikely that the zone extends 
beyond the axes of the fibres adjacent to the crack 
plane, i.e. t ~- a /2  in Fig. 4, where a is the fibre 
spacing. If the fibres are packed in a square array, and 
have diameter d, then 

V r = ~ d 2 / 4 a  2 (8) 

so that t ~- d(~/Vr)~/2/4 and Equation 1 becomes, 
w r i t i n g  0-my for ay 

G,m ~ o-myed(g/Vr)l/2/2 (9) 

4.2. Fibre work 
Delamination is facilitated if the fibres can debond 
easily. These fibre debonds can decrease the work in 
the matrix in proportion to the relative amount 
of fibre. (Hunston [4] reported some debonding with 
thermoplastic matrices.) 

Also, the process envisaged in Fig. 4 involves some 
fibre flexure. The elastic energy in the flexed fibres 
must be supplied by the applied stress, and hence must 
contribute to the work of fracture. Suppose the fibres 
are flexed to a minimum radius R, as shown in Fig. 5. 
The region of flexure is expected to propagate along 
the fibres, keeping up with the rate of advance of the 
crack tip. The strain energy for unit distance of crack 
propagation is Uf, where 

Uf = E f I / Z R  2 (10) 

where I is the moment of  area of the fibres, i.e. 

I = 7zd4/64 (11) 

per fibre. Across unit width of crack front there will be 
1/a fibres involved in flexure where a is obtained from 
Equation 8. It is likely that several layers of fibres will 
be involved. If the number of layers is n, then the total 
work (Equations 10 and 11) is 

Glr = nErd3(Tz/Vr)l/z / 1 2 8 R  2 (12) 

Finally, let the fibre stress at the fibre surface due to 
flexure at radius R be o-f. Because the corresponding 
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Figure 4 Three stages in the growth of a 
delamination crack in a composite. 
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strain is d / 2 R  = o-f lE t  we can write 

GIf = ndo-~(Tr/Vf)L/2 / 3 2 E f  03) 

5. Discussion 
It is now appropriate to examine the relative contri- 
butions of the various processes discussed. To do this 
we need to make plausible assumptions about the 
various parameters used. 

First examine the pseudo toughness arising from 
the need to overcome the resistance to yielding of the 
matrix, Equation 7. Let E* be given by Equation 6. 
The maximum value of r and minimum value of 
b (=  1) will give the maximum value of GIp. Let r be 
equal to half the minimum spacing between fibres, 
i.e. ( a -  d ) / 2 ,  which using Equation 8 comes to 
r = d[(rc/4Vf)  1/2 - 1]/2 and let Vr = 0.5, and b = 1. 
Then Equation 7 becomes 

Glp ~ rCa2myd[(rc/2) '/2 - 11/16 (ErEm) 1/2 (14) 

For carbon d = 8#m and Ef ~ 233GPa (HTS 
fibres). For  the polymer matrix O'my is not likely to 
exceed 100 MPa, and 2.5 GPa is a typical value for Em. 

This  gives a maximum value of Glp of about 1 J m -2. 
Thus the crack tip stress field criterion is easily sat- 
isfied with a material having a work of fracture of 
100Jm -2 or more. 

For the work in the polymer matrix, GIm, Equation 9, 
a value for e is required. If a ductile polymer is used, 
it may be possible for e to reach 1.0, as for metals. This 
gives a Gim of about l k J m  2 for amy = 100MPa. 

The work of fibre flexure, G~r, Equation 13 has its 
maximum value when the fibre flexure stress reaches 
the ultimate strength, i.e. about 3 GPa. Letting n = 
10, this gives G~r ~ 100Jm -2. 

It is clear from these considerations that the work of 
matrix fracture is the most important component of 
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Figure 5 Fibre curvature close to a crack in a laminate. 



the work of delamination. The work comes close to 
recent values for this (e.g. Gillespie et al. [17] gives 1.6 
to 2 .0kJm 2), even though we are neglecting fibre 
pull-outs. 

6. Conclusion 
These considerations show that stress criteria and 
energy criteria for fracture are linked. In particular, 
plausible values for the work of Jelamination can be 
estimated from a matrix yielding process at the crack 
tip: Equation 9 gives results which are compatible with 
experimental values. The polymer yield stress assumed 
(i.e. about 100MPa) and the strain at fracture of 
about 100% are close to practical values for these 
parameters. 

As the plastic zone at the crack tip is limited by the 
adjacent fibres, the work of fracture of the matrix is an 
important factor, influencing delamination resistance 
only when the matrix fracture involves a thinner 
worked zone than the interfibre spacing. Thus for 
brittle polymers, with thin worked zones (the worked 
zone thickness may be estimated very roughly from 
Equation 1 if the plastic strain at fracture is known), 
the work ofdelamination can be greater than or equal 
to the work of fracture of the matrix. (Other con- 
tributors to the work of  fracture are fibre breakage 
and pull-out. These depend on geometrical factors, 
and can only be estimated when the exact fibre 
geometry, e.g. straightness, is clearly defined.) With 
a tougher matrix, i.e. a thicker worked zone, toughness 
is limited because of constraints introduced by the 
presence of  the fibres. Now, instead of the work of 
fracture of the matrix being one of the principal fac- 
tors controlling the delamination, the matrix work 
during delamination is proportional to the yield stress 

and the maximum strain achievable in the matrix, in 
the fracture zone. 

This leads to the conclusion that beyond a certain 
matrix toughness, further improvements in the resist- 
ance to delamination depend on producing polymers 
which have higher yield stresses, while still retaining 
very large strains to failure. This approach will only 
be successful if at the same time the fibre-matrix 
adhesion is strong enough to obviate the possibility of 
massive bond failure at the fibre surface. 
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